
Chapitre 4 : corrigé 
Exercice 4.1 
Un tenseur des contraintes uniforme dans l’espace (O, x, y, z) mais variant au cours du 

temps, t > 0. , est donné par :    
3 1 t

σ = 1 0 2  (MPa)
t 2 0

 
 
 
 
 

  ( t en seconde) 

Déterminer la densité de force de contact (composante normale et de cisaillement) sur  
- les plans (O, x, y), (O, y, z) et (O, x, z) 
- le plan passant par O et parallèle au plan définis par les points A(1,0,0), B(0,2,0) et 

C(0,0,2). 
 
La densité de force de contact est donnée par t = σ n



 . Les composantes normale et 
tangentielle à la surface sont  donc : ( ) 2 2

n t nt  = σ n .n    et  t  = t - t


  . 
Les normales unitaires aux 3 plans de base du repère sont les 3 vecteurs définissant ce 

repère. On a donc xy z yz x xz y

t 3 1
t  = σ e = 2 ,  t  = σ e = 1   et  t  = σ e = 0   en MPa

0 t 2
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     
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  

   .  

Les composantes normale et tangentielle aux surfaces sont 

2
xy,n xy,t

2
yz,n yz,t

xz,n xz,t

t  = 0,  t  = t +4    en MPa

t  = 3,  t  = t +1   en MPa

t  = 0,  t  = 5   en MPa

 

La normale au plan (ABC) se déduit du produit vectoriel qu’il faut normaliser à un : 

n t

1 1 4 2 t+7
1 1AB = 2 ,  AC = 0   et  AB^AC= 2   , la normale est donc n = 1   et   t = 4  en MPa
6 60 2 2 1 2t+2

7 t-110+2tsoit   t  =   et  t  =    en MPa
3 3 2

− −         
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Déterminer la force de contact sur le triangle ABC au temps t = 1 s. 
La surface du triangle ABC est la moitié de la norme du produit vectoriel soit 

( )1 16 4 4  = 6   en m2 si le repère est en m
2

S = + + . Comme au temps t = 1s, la densité de force 

est uniforme, la force est donnée par : 

6

8 2
6F =tS= . 4  =4 1   en MN (MPa x m2) soit  F = 4 6.10   N = 9.79 MN  (Meganewton)
6 4 1
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Déterminer les valeurs propres du tenseur σ au temps t = 1 s. 

3 1 1
en t = 1s, σ = 1 0 2  (MPa)

1 2 0





 
 

 

Recherche des valeurs propres. 



( ) 2 2

3 1 1
det σ-xI 1 2 0 (3 )( 4) ( x 2) (2 x) (x 2)(x 5 4) (x 2)(x 1)( 4)

1 2

x
x x x x x

x

−
= − = = − − − − − + + = − + − + = − + − −

−
 

Les valeurs propres sont 4 MPa, 1 MPa et -2 MPa 
 
Déterminer le repère principal du tenseur des contraintes σ au temps t = 1s. 
 
Recherche des vecteurs propres. Le vecteur propre associé à -2 est défini par  

σX = -2X  soit         
3x y z 2

2 2
2 2

x
x z y
x y z

+ + = −
+ = −
+ = −

 Les 3 équations sont nécessairement liées.  

Dans notre cas, les équations 2 et 3 sont identiques. Il reste donc :  
5 x y z 0

2 2 0x y z
+ + =
+ + =

.  

Soit x = 0 et y = - z. Le vecteur propre est donc 
0

1 1
2 1

 
 
 
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Le vecteur propre associé à 1 est défini par σX = X  soit    
3x y z

2
2

x
x z y
x y z

+ + =
+ =
+ =

 

Les 3 équations sont à nouveau liées. Dans notre cas, la somme de 2 et 3 donne l’équation 1. 
Il reste donc :   

2 x y z 0
2 0x y z

+ + =
− + =

  soit x = x, y = -x et  z = -x. Le vecteur propre est donc 
1

1 1
3 1

 
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. 

Le 3ème vecteur propre est le produit vectoriel des 2 premiers soit 
2

1 1
6 1
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 et il est associé à 

la valeur propre 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Exercice 4.10 
1. Appliquons l’équation de la statique au liquide de densité ρl: 

l zdivσ + ρ g = 0  avec σ -pId  (Id = tenseur identité) et g = -ge=  

Cela entraine alors les 3 relations suivantes: 

l l

l a l a

p p p- ρ  =   soit  =  = 0  donc p=p(z) et  -ρ g = 0  

ce qui donne p(z)=-ρ gz + cste = p  -ρ gz puisque p(0)=p
x y z
∂ ∂ ∂

− − −
∂ ∂ ∂

gradp + g 0
 

2. Soit une fonction scalaire f et un tenseur tels que dσ = fI  

Le théorème de la divergence qui s’écrit: 
Ω Ω

div(σ) dV = σndS
∂

∫ ∫  devient: 

Ω Ω Ω

div(σ) div(fId)=gradf qui donne  div(σ) dV = gradf dV = fndS
∂

= ∫ ∫ ∫   

appelé le théorème du gradient:
Ω Ω

grad(f) dV= f ndS
∂

∫ ∫  

3. L’action du liquide sur la partie immergée d’un solide flottant dans l’eau vaut: 

l z l i zσ dS p dS p dS dV ρ g dV ρ g = poussée d'Archimède

avec i=surface de la partie immergée et  i=volume immergé.
i i i i i∂Ω ∂Ω ∂Ω Ω Ω

= − = − = − = = Ω

∂Ω Ω

∫ ∫ ∫ ∫ ∫n n n gradp e e
 

Ce qui traduit bien le principe d’Archimède qui devient ainsi un théorème … 
 

 
 
 

P = pa 

Liquide 

p= 

Z 

 

Théorème d’Archimède 



Exercice 4.11 : volume émergé d’un iceberg 
 
Le but de cet exercice est de calculer le volume émergé d’un iceberg flottant sur la mer. Le 
tenseur des contraintes dans le fluide supposé au repos est isostatique: ses trois composantes 
diagonales sont non nulles et égales à –p. La pression atmosphérique (z = 0) est notée pa. Dans 
l’exercice précédent, il est établi que les forces de contact sur l’iceberg s’écrivent :

l i 3Ω
σ dS = ρ gΩ

∂∫ n e  où iΩ  correspond au volume immergé de l’iceberg. 
En appliquant l’équilibre mécanique à l’iceberg qui flotte sur l’eau, calculer alors le 
rapport /  avec e i eΩ Ω Ω = Ω +Ω  en fonction des masses volumiques du liquide et de la glace 
notée gρ  constituant l’iceberg. eΩ  correspond au volume émergé de l’iceberg. 

A l’équilibre, le poids de l’iceberg et la poussée d’Archimède se compensent, i.e.  

g l i i e

l g l e e l g l

-ρ gΩ + ρ gΩ  = 0  avec  Ω avec Ω = Ω +Ω
soit Ω(ρ -ρ ) = ρ Ω   et donc  Ω / Ω=(ρ -ρ ) / ρ (1000 900) /1000 0.1= − =

 

Seul 10% du volume d’un iceberg émerge. Le reste est sous l’eau d’où le danger. 
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